

[Selvi* et al., 5(8): August, 2016]

ICTM Value: 3.00

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

ISSN: 2277-9655

Impact Factor: 4.116

τ^* - GENERALIZED SEMICLOSED SETS IN TOPOLOGICAL SPACES

R. Selvi*, C. Aruna

* Sri Parasakthi College for Women, Courtallam – 627802

Research Scholar, Research centre of mathematics, Sri Parasakthi College for Women, Courtallam-627802

DOI: 10.5281/zenodo.60107

ABSTRACT

In this paper, we introduce a new class of sets called τ^* -generalized semiclosed sets and τ^* -generalized semiopen sets in topological spaces and study some of their properties.

KEYWORDS: $\tau^* - gs$ closed set, $\tau^* - gs$ open set

INTRODUCTION

In 1970, Levine[6] introduced the concept of generalized closed sets as a generalization of closed sets in topological spaces. Using generalized closed sets, Dunham[5] introduced the concept of the closure operator c1* and a new topology τ^* and studied some of their properties. S.P.Arya[2], P.Bhattacharyya and B.K.Lahiri[3], J.Dontchev[4], H.Maki, R.Devi and K.Balachandran[9], [10], P.Sundaram and A.Pushpalatha[12], A.S.Mashhour, M.E.Abd E1-Monsof and S.N.E1-Deeb[11], D.Andrijevic[1] and S.M.Maheshwari and P.C.Jain[9], Ivan Reilly [13], A.Pushpalatha, S.Eswaran and P.RajaRubi [14] introduced and investigated generalized semi closed sets, semi generalized closed sets, generalized semi preclosed sets, α —generalized closed sets, generalized α closed sets, strongly generalized closed sets, preclosed sets, semi-preclosed sets and α —closed sets, generalized preclosed sets and τ^* -generalized closed sets respectively. In this paper, we obtain a new generalization of preclosed sets in the weaker topological space(X, τ^*).

Throughout this paper X and Y are topological spaces on which no separation axioms are assumed unless otherwise explicitly stated. For a subset A of a topological space X, $\operatorname{int}(A)$, $\operatorname{cl}(A)$, $\operatorname{cl}^*(A)$, $\operatorname{scl}(A)$, $\operatorname{scl}(A)$, $\operatorname{scl}(A)$, $\operatorname{cl}_{\alpha}(A)$, $\operatorname{cl}_{\alpha}(A)$, and A^c denote the interior, closure, $\operatorname{closure}^*$, semi-closure, semi-preclosure, $\operatorname{\alpha}$ -closure, preclosure and complement of A respectively.

PRELIMINARIES

We recall the following definitions

Definition: 2.1

A subset A of a topological space (X, τ) is called

- (i) Generalized closed (briefly g-closed)[6] if $cl(A)\subseteq G$ whenever $A\subseteq G$ and G is open in X
- (ii) Semi-generalized closed(briefly sg-closed)[3] if $scl(A)\subseteq G$ whenever $A\subseteq G$ and G is semi open in X.
- (iii) Generalized semi-closed (briefly gs-closed)[2] if scl(A)⊆G whenever A⊆G and G is open in X.
- (iv) α closed[8] if cl(int(cl(A))) \subseteq A
- (v) α -generalized closed (briefly α g-closed)[9] if $cl_{\alpha}(A) \subseteq G$ whenever $A \subseteq G$ and G is open in X.
- (vi) Generalized α -closed (briefly $g\alpha$ -closed)[10] if $spcl(A) \subseteq G$ whenever $A \subseteq G$ and G is open in X.

[Selvi* et al., 5(8): August, 2016]

ICTM Value: 3.00 Impact Factor: 4.116

ISSN: 2277-9655

- (vii) Generalized semi-preclosed (briefly gsp-closed)[2] if $scl(A) \subseteq G$ whenever $A \subseteq G$ and G is open in X.
- (viii) Strongly generalized closed (briefly strongly g-closed)[12] if $cl(A) \subseteq G$ whenever $A \subseteq G$ and G is g-open in X.
- (ix) Preclosed[11] if $cl(int(A)) \subseteq A$
- (x) Semi-closed[7] if $int(cl(A)) \subseteq A$
- (xi) Semi-preclosed (briefly sp-closed)[1] if $int(cl(int(A))) \subseteq A$.
- (xii) Generalized preclosed (briefly gp-closed)[13] if $cl_pA \subseteq G$ whenever $A \subseteq G$ and G is open.

The complements of the above mentioned sets are called their respective open sets.

Definition: 2.2

For the subset A of a topological X, the generalized closure operator $cl^*[5]$ is defined by the intersection of all g-closed sets containing A.

Definition: 2.3

For the subset A of a topological X, the topology τ^* is defined by $\tau^* = \{G: cl^*(G^c) = G^c\}$.

Definition: 2.4

For the subset A of a topological X,

- (i) the semi-closure of $A(briefly\ scl(A))$ [7] is defined as the intersection of all semi-closed sets containing A.
- (ii) the semi-Pre closure of A(briefly spcl(A))[1] is defined as the intersection of all semi-preclosed sets containing A.
- (iii) the α closure of A (briefly $cl_{\alpha}(A)$)[8] is defined as the intersection of all α closed sets containing A.
- (iv) the preclosure of A, denoted by $cl_p(A)[13]$, is the smallest preclosed set containing A.

Definition: 2.5

A subset A of a topological space X is called τ^* generalized closed set ($briefly \ \tau^* - gclosed$)[14] if $cl^*(A) \subseteq G$ whenever $A \subseteq G$ and G is $\tau^* - open$. The complement of $\tau^* - generalized$ closed set is called the $\tau^* - generalized$ open set ($briefly \ \tau^* - gopen$).

Definition: 2.6

A subset A of a topological space X is called τ^* – generalized preclosed (briefly τ^* – gp – closed)[15] if $cl^*(cl_p(A)) \subseteq G$ whenever $A \subseteq G$ and G is τ^* – generalized open. The complement of τ^* – generalized preclosed set is called the τ^* – generalized preopen set (briefly τ^* – gp – open).

τ^* – Generalized SEMICLOSED SETS IN TOPOLOGICAL SPACES

In this section, we introduce the concept of τ^* - generalized semiclosed sets in topological spaces.

Definition: 3.1

A subset A of a topological space X is called τ^* – generalized semiclosed ($briefly \ \tau^*$ – gsclosed) if $cl^*(scl(A)) \subseteq G$ whenever $A \subseteq G$ and G is τ^* – open. The complement of τ^* – generalized semiclosed set is called the τ^* – generalized semiopen set (briefly τ^* – gsopen).

Example: 3.2

Let $X = \{a, b, c\}$ and let $\tau = \{\phi, X, \{a\}, \{a, b\}, \{c\}, \{a, c\}\}$. Here (X, τ^*) is τ^* -generalized semiclosed

Theorem: 3.3

Every closed set in X is τ^* – *gsclosed*.

Proof:

Let A be a closed set. Let $A \subseteq G$. Since A is closed, $cl(A) = A \subseteq G$. But $cl^*(scl(A)) \subseteq cl(A)$. Thus, we have $cl^*(scl(A)) \subseteq G$ whenever $A \subseteq G$ and G is $\tau^* - open$. Therefore A is $\tau^* - gsclosed$.

Theorem: 3.4

Every τ^* – *closed* set in X is τ^* – *gsclosed*.

Proof:

[Selvi* et al., 5(8): August, 2016]

ICTM Value: 3.00 Impact Factor: 4.116

Let A be a τ^* – closed set. Let $A \subseteq G$ where G is τ^* – open Since A is τ^* – closed, $cl^*(scl(A)) = A \subseteq G$. Thus, we have $cl^*(scl(A)) \subseteq G$ whenever $A \subseteq G$ and G is τ^* – open. Therefore A is τ^* – gs closed.

ISSN: 2277-9655

Theorem: 3.5

Every g-closed set in X is a τ^* -gsclosed set but not conversely.

Proof:

Let A be a g-closed set. Assume that $A \subseteq G$, G is $\tau^* - open$ in X. Then $cl(A) \subseteq G$, Since A is g-closed. But $cl^*(scl(A)) \subseteq cl(A)$. Therefore $cl^*(scl(A)) \subseteq G$. Hence A is $\tau^* - gsclosed$.

The converse of the above theorem need not be true as seen from the following example.

Example: 3.6

Consider the topological space $X = \{a, b, c\}$ with topology $\tau = \{X, \phi, \{a\}, \{a, b\}, \{c\}, \{a, c\}\}\}$. Then, the set $\{a, c\}$ is $\tau^* - gp$ -closed but not g-closed.

Remark: 3.7

The following example shows that $\tau^* - gp - closed$ sets are independent from sp-closed, sg-closed set, $\alpha - closed$ set, preclosed set, gs-closed set, gsp-closed set, $\alpha - closed$ set and $\alpha - closed$ set.

Example: 3.8

Let $X = \{a, b, c\}$ and $Y = \{a, b, c, d\}$ be the topological spaces.

- (i) Consider the topology $\tau = \{X, \phi, \{a\}\}\$. Then the sets $\{a\}, \{a, b\}$ and $\{a, c\}$ are $\tau^* gs closed$ but not sp-closed.
- (ii) Consider the topology $\tau = \{X, \phi, \{a, b\}\}$. Then the sets $\{a\}$ and $\{b\}$ are sp-closed but not $\tau^* gs closed$.
- (iii) Consider the topology $\tau = \{X, \phi\}$. Then the sets $\{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}$ and $\{a, c\}$ are $\sigma^* closed$ but not sg-closed.
 - (iv) Consider the topology $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$. Then the sets $\{a\}$ and $\{b\}$ are sg-closed but not $\tau^* gs closed$.
 - (v) Consider the topology $\tau = \{X, \phi, \{a\}\}$. Then the sets $\{a\}, \{b\}, \{c\}, \{a, b\}$ and $\{a, c\}$ are $\tau^* gs closed$ but not $\alpha closed$.
 - (vi) Consider the topology $\tau = \{X, \phi, \{a\}, \{a, b\}\}\$. Then the set $\{b\}$ is $\alpha closed$ but not $\tau^* gs closed$.
 - (vii) Consider the topology $\tau = \{X, \phi, \{a\}\}$. Then the sets $\{a\} \{a, b\}$ and $\{a, c\}$ are $\tau^* gs closed$ but not preclosed.
 - (viii) Consider the topology $\tau = \{X, \phi, \{b\}, \{a, b\}\}\$. Then the set $\{a\}$ is pre-closed but not $\tau^* gs closed$.
- (ix) Consider the topology $\tau = \{X, \phi\}$. Then the sets $\{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\} \text{ and } \{a, c\} \text{ are } \sigma^* closed$ but not gs-closed.
 - (x) Consider the topology $\tau = \{Y, \phi, \{a\}, \{a, b, c\}, \{a, b, d\}\}$. Then the sets $\{b\} \{b, c\}$ and $\{b, d\}$ are gs closed but not $\tau^* gs$ -closed.
 - (xi) Consider the topology $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}\$. Then the sets $\{b\}$ and $\{a, b\}$ are gsp closed but not $\tau^* gs$ -closed.
 - (xii) Consider the topology $\tau = \{Y, \phi, \{a\}\}$. Then the set $\{a\}$ is $\tau^* gs closed$ but not gsp-closed.
 - (xiii) Consider the topology $\tau = \{X, \phi, \{a\}\}\$. Then the set $\{a\}$ is $\tau^* gs closed$ but not α g-closed.
 - (xiv)Consider the topology $\tau = \{Y, \phi, \{a\}, \{a, b, c\}, \{a, b, d\}\}$. Then the set $\{b\}, \{b, c\}, \{b, d\}$ are $\alpha g closed$ but not $\tau^* gs closed$.
 - (xv) Consider the topology $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}\}$. Then the set $\{b\}$ is $\tau^* gs closed$ but not $g\alpha closed$.
 - (xvi)Consider the topology $\tau = \{Y, \phi, \{a\}, \{a, b, c\}, \{a, b, d\}\}$. Then the set $\{b\}, \{b, c\}$ and $\{b, d\}$ are $g\alpha closed$ but not $\tau^* gs closed$.

Theorem: 3.9

For any two sets A and B $cl^*(scl(A \cup B)) = cl^*(scl(A)) \cup cl^*(scl(B))$

[Selvi* *et al.*, 5(8): August, 2016] ICTM Value: 3.00

Proof:

Since $A \subseteq A \cup B$, we have $cl^*(scl(A)) \subseteq cl^*(scl(A \cup B))$ and Since $B \subseteq A \cup B$, we have $cl^*(scl(B)) \subseteq cl^*(scl(A \cup B))$. Therefore $cl^*(scl(A)) \cup cl^*(scl(B)) \subseteq cl^*(scl(A \cup B))$. Also, $cl^*(scl(A))$ and $cl^*(scl(B))$ are the closed sets. Therefore $cl^*(scl(A)) \cup cl^*(scl(B))$ is also a closed set. Again, $A \subseteq cl^*(scl(A))$ and $B \subseteq cl^*(scl(B))$, Implies $\cup B \subseteq cl^*(scl(A)) \cup cl^*(scl(B))$. Thus, $cl^*(scl(A)) \cup cl^*(scl(B))$ is a closed set containing $A \cup B$. Since $cl^*(scl(A \cup B))$ is the smallest closed set containing $A \cup B$. We have $cl^*(scl(A \cup B)) \subseteq cl^*(scl(A)) \cup cl^*(scl(B))$. Thus, $cl^*(scl(A \cup B)) = cl^*(scl(A)) \cup cl^*(scl(B))$

ISSN: 2277-9655

Impact Factor: 4.116

Theorem: 3.10

Union of two τ^* – gsclosed sets in X is a τ^* – gsclosed set in X.

Proof:

Let A and B be two $\tau^* - gsclosed$ sets. Let $A \cup B \subseteq G$, where G is $\tau^* - open$. Since A and B are $\tau^* - gs - closed$ sets, $cl^*(scl(A)) \cup cl^*(scl(B)) \subseteq G$. But by theorem 3.9 $cl^*(scl(A)) \cup cl^*(scl(B)) = cl^*(scl(A \cup B))$. Therefore $cl^*(scl(A \cup B)) \subseteq G$. Hence $A \cup B$ is a $\tau^* - gsclosed$ set.

Theorem: 3.11

A subset A of X is $\tau^* - gsclosed$ if and only if $cl^*(scl(A)) - A$ contains no non-empty $\tau^* - closed$ set in X.

Proof:

Let A be a $\tau^* - gsclosed$ set. Suppose that F is a non-empty $\tau^* - closed$ subset of $cl^*(scl(A)) - A$. Now, $F \subseteq cl^*(scl(A)) - A$. Then $F \subseteq cl^*(scl(A)) \cap A^c$, Since $cl^*(scl(A)) - A = cl^*(scl(A)) \cap A^c$. Therefore $F \subseteq cl^*(scl(A))$ and $F \subseteq A^c$. Since F^c is a τ^* -open set and A is a $\tau^* - gsclosed$, $cl^*(scl(A)) \subseteq F^c$. That is $F \subseteq cl^*(scl(A)) \cap [cl^*(scl(A))]^c = \phi$. That is $F = \phi$, a contradiction. Thus, $cl^*(scl(A)) - A$ contain no non-empty $\tau^* - closed$ set in X. Conversely, assume that $cl^*(scl(A)) - A$ contains no non-empty $\tau^* - closed$ set. Let $A \subseteq G$, G is $\tau^* - open$. Suppose that $cl^*(scl(A))$ is not contained in G. then $cl^*(scl(A)) \cap G^c$ is a non-empty $\tau^* - closed$ set of $cl^*(scl(A)) - A$ which is a contradiction. Therefore, $cl^*(scl(A)) - A \subseteq G$ and hence A is $\tau^* - gsclosed$.

Corollary: 3.12

A subset A of X is $\tau^* - gsclosed$ if and only $cl^*(scl(A)) - A$ contains no non-empty closed set in X.

Proof

The proof follows from the theorem 3.11 and the fact that every closed set is $\tau^* - closed$ set in X.

Corollary: 3.13

A subset A of X is $\tau^* - gs - closed$ if and only if $cl^*(scl(A)) - A$ contains no non-empty open set in X.

Proof

The proof follows from the theorem 3.11 and the fact that every open set is τ^* – open set in X.

Theorem: 3.14

If a subset A of X is $\tau^* - gsclosed$ and $A \subseteq B \subseteq cl^*(scl(A))$, then B is $\tau^* - gsclosed$ set in X.

Proof:

Let A be a $\tau^* - gsclosed$ set such that $A \subseteq B \subseteq cl^*(scl(A))$. Let U be a $\tau^* - open$ set of X such that $B \subseteq U$. Since A is $\tau^* - gsclosed$, we have $cl^*(scl(A)) \subseteq U$.

Now, $cl^*(scl(A)) \subseteq cl^*(scl(B)) \subseteq cl^*(cl^*(scl(A))) = cl^*(scl(A)) \subseteq U$.

That is $cl^*(scl(B)) \subseteq U$, U is $\tau^* - open$.

Therefore B is τ^* – *gsclosed* set in X.

The converse of the above theorem need not be true as seen from the following example.

Example: 3.15

Consider the topological space $X = \{a, b, c\}$ with topology $\tau = \{X, \phi, \{a\}, \{a, b\}\}$. Then A and B are $\tau^* - gsclosed$ sets in (X, τ) . But $A \subseteq B$ is not a subset of $cl^*(scl(A))$.

Theorem: 3.16

Let A be a τ^* – gsclosed in (X, τ) . Then A is g – closed if and only if $cl^*(scl(A))$ – A is τ^* – open.

Proof:

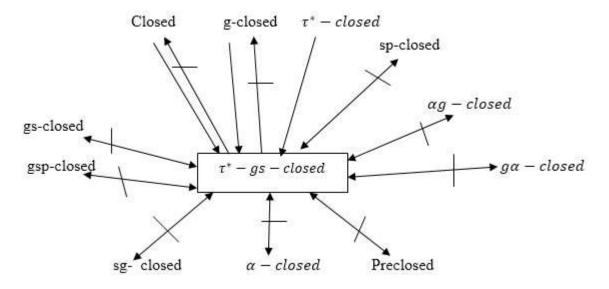
[Selvi* *et al.*, 5(8): August, 2016] ICTM Value: 3.00

is August, 2016] ISSN: 2277-9655 Impact Factor: 4.116

Suppose A is g-closed in X. Then, $cl^*(scl(A)) = A$ and so $cl^*(scl(A)) - A = \phi$ which is $\tau^* - open$ in X. Conversely, suppose $cl^*(scl(A)) - A$ is $\tau^* - open$ in X. Since A is $\tau^* - gsclosed$, by the theorem 3.11, $cl^*(scl(A)) - A$ contains no non-empty $\tau^* - closed$ set in X. Then, $cl^*(scl(A)) - A = \phi$. Hence, A is g-closed.

Remark 3.17

From the above discussion, we obtain the following implications.



REFERENCES

- [1] D.Andrijevic, Semi-preopen sets, Mat. Vesnik, 38 (1986), 24-32.
- [2] S.P.Arya and T.Nour, Characterizations of s-normal spaces, Indian J.Pure Appl.Math., 21(1990), 717-719.
- [3] P.Bhattacharyya and B.K.Lahiri, Semi generalized closed sets in topology, Indina J.Math., 29(1987), 375382
- [4] J.Dontchev, On generalizing semipreopen sets, Mem, Fac. Sci. Kochi Uni. Ser A, Math., 16(1995), 35-48.
- [5] W.Dunham, A new closure operator for non.T₁ topologies, Kyungpook Math.J.22(1982),55-60.
- [6] N.Levine, Generalized closed sets in topology, Rend.Circ.Mat.Palermo, 19,(2)(1970),89-86.
- [7] N.Levine, Semi-open sets and semi-continuity in topological spaces, Amer.Math.Monthly; 70(1963),36-41.
- [8] S.N.Maheswari and P.C.Jain, Some new mappings, Mathematica, Vol.24(47) (1-2)(1982), 53-55.
- [9] H.Maki, R.Devi and K.Balachandran, Assicated topologies of generalized α-closed sets and α-generalized closed sets, Mem. Fac. Sci. Kochi Univ.(Math).15(1994),51-63.
- [10] H.Maki, R.Devi and K.Balachandran, Generalized α-closed sets in topology, Bull. Fukuoka Uni., Ed.Part III,42(1993), 13-21.
- [11] A.S.Mashhour, M.E.Abd E1-Monesf and S.N.E1-Deeb, On precontinuous and weak precontinuous functions, Proc.Math.Phys. Soc.Egypt 53 (1982),47-53.
- [12] P.Sundaram, A.Pushpalatha, Strongly generalized closed sets in topological spaces, Far East J.Math. Sci.(FJMS) 3(4)(2001), 563-575.
- [13] Ivan Reilly, Generalized Closed Sets: A survey of recent work, Auckland Univ. 1248, 2002(1-11).
- [14] A.Pushpalatha, S.Eswaran and P.RajaRubi, τ^* -generalized closed sets in topological spaces, WCE 2009, July 1-3, 2009, London, U.K.
- [15] C.Aruna, R. Selvi, τ^* generalized preclosed sets in topological spaces e-ISSN: 2320-8163, www.ijtra.com Volume 4, Issue 4 (July-Aug, 2016), PP. 99-103